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Abstract

Recently, there has been an increasing level of interest in reporting subscores. This paper

examines the issue of reporting subscores at an aggregate level, especially at the level of

institutions that the examinees belong to. A series of statistical analyses is suggested to

determine when subscores at the institutional level have any added value over the total

scores. The methods are applied to two operational data sets. For the data under study,

the results provide little support in favor of reporting subscores for either examinees or

institutions.
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1. Introduction

What are subscores and why are they desirable? Educational and psychological

tests often have different subsections based on content categories or blueprints. For

example, a test on mathematics knowledge may have subsections on algebra and geometry.

Similarly, a test of general ability can have subsections on mathematics, reading, and

writing. Scores assigned to these subsections are commonly known as subscores. Subscores

resulting from the administration of tests with high-stakes outcomes are desirable for at

least two important reasons. First, failing candidates want to know their strengths and

weaknesses in different content areas to plan for future remedial work. Second, states and

academic institutions such as colleges and universities want a profile of performance for

their graduates to better evaluate their training and focus on areas that need instructional

improvement (Haladyna & Kramer, 2004).

Despite this apparent usefulness of subscores, certain important factors must be

considered before making a decision on whether to report subscores at either the individual

or institutional level. Although many tests are designed to cover a broad domain, and the

total test score is considered to be a composite of different abilities measured by different

subsections, it is debatable whether a subsection with fewer items than the total test can

be viewed as a mini-test that can precisely measure a unique ability.

Haberman (2005) argued that a subscore may be considered useful only when it

provides a more accurate measure of the construct being measured than is provided by the

total score. Wainer et al. (2001) suggested that a test used for diagnostic purposes must

yield scores that are reliable both for the total test and for the subscores associated with

specific subsections or content areas. Furthermore, to be useful for diagnostic purposes,

the subscores must focus as closely as possible on the content areas in which the examinee

may be having difficulty. Finally, Tate (2004) has emphasized the importance of ensuring

reasonable subscore performance in terms of high reliability and validity to minimize

incorrect instructional and remediation decisions.

From the above review, it is apparent that the quality of the subscores must be assessed

before considering score reporting at the subscore level. It also serves as an important

reminder of the following: Just as inaccurate information at the total test score level
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can lead to inaccurate pass and fail decisions with damaging consequences to both the

testing programs and test takers, inaccurate information at the subscore level can also

lead to incorrect remediation decisions resulting in large and needless expense for state or

institutions.

The studies cited above have mainly focused on the use of subscores at the examinee

level (ignoring any information from institutions or state agencies). However, as mentioned

earlier, subscores at the institutional level could also be of interest for planning remedial

and training programs. Moreover, subscores may not offer added value at the examinee level

but may do so at the institutional level. For example, it is possible that the true subscores

underlying subtests A and B are perfectly correlated (in which case subscores do not have

any added value) within each institution in a population of institutions, but the institution

means may have a lower correlation (in which case subscores may have any added value).

Therefore it is important to examine the adequacy of subscores at the institutional level.

Institutional level subscoring can prove to be useful when there is considerable variation

in test performance between different institutions. For example, on a typical Praxis
TM

test,

there are several user states and institutions that have examinee populations that may

differ considerably in terms of the measured ability. Variation in test scores at the state or

institutional level may justify investigating the use of subscores at these levels.

This paper performs a thorough analysis to determine when subscores at the

institutional level have any added value over the total score for the tests concerned. First,

an individual-level analysis is performed, as in Haberman (2005), that examines whether

individual-level subscoring is justified. Then, a similar analysis is developed to determine

whether reporting of test subscores is justified at an institutional level. The approach

used involves an analysis of proportional reduction in error variance in estimation of true

institutional subscore means. The basic criterion applied is that the mean subscore for

examinees from an institution is not worth reporting if the true institutional mean is more

accurately predicted by the mean total score of examinees from the institution than by

the mean total subscore of examinees from the institution. All the computations involved

are quite simple and use popular software programs, so that operational implementation

is straightforward for the suggested methods. In addition, the methods can be directly
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applied if score reporting is considered at a different level of aggregation, say by states

rather than by institutions.

At the institutional level, the analysis of appropriate reporting practice depends on

the number of examinees from the institution who take the test under study. Although

cases certainly can arise in which no evidence exists that reporting of subscores is ever

appropriate, it is quite common for analysis to reveal that subscores may be usefully

reported if the number of examinees from the institution is sufficiently large, but reporting

is inappropriate if the number of examinees in the institution is relatively small. Thus this

report considers minimum sample-size requirements for reporting of means of subscores of

examinees from a particular institution.

Longford (1990) studied the issue of reporting subscores at the college level, performing

a multilevel variance component analysis on data at the pilot stage of development of a test,

so that there were issues like voluntary participation of colleges, motivation of students,

the lack of many colleges, and a model assumption (of normality) that was admitted to

be “contentious” (p. 111). Our study is different from that of Longford (1990) in three

basic ways: (a) We perform an analysis using a measure that is very close to the classical

reliability measure—hence the method is more intuitive, (b) there are no contentious

model assumptions, and (c) we analyze large operational test data sets from a test with

high-stakes outcomes that involves a large number of institutions.

Section 2 describes the methodology involved, and Section 3 discusses the results

obtained when the methodology is applied to two data sets from a basic skills test with

high-stakes outcomes belonging to the Praxis series. Discussions and conclusions are

provided in Section 4.

2. Methodology and Analysis

This section describes our step-by-step approach for determining whether, when, and

how to report institutional-level subscores. We begin with a description of an examinee-level

analysis in Section 2 to determine if the examinee-level subscores offer any added value over

the total scores. This section closely follows Haberman (2005). However, the question of

the usefulness of institutional-level subscores is different from the question of usefulness
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of the examinee-level subscores. Sections 2.2 and 2.3 describe analyses required at the

institutional level.

2.1 Examinee-Level Analysis of Mean-Squared Error

At the examinee level, analysis involves the observed subscore s, the true subscore st,

the observed total score x, and the true total score xt. It is assumed that st, xt, s − st,

and x − xt all have positive variances. As usual in classical test theory, s and st have

common mean E(s), x and xt have common mean E(x), and the true scores st and xt are

uncorrelated with the errors s − st and x − xt. For random variables u and v with finite

means and variances, the expectation of u is E(u), the standard deviation of u is σ(u),

the variance of u is σ2(u), the covariance of u and v is c(u, v), the correlation of u and v

is ρ(u, v), and the squared correlation of u and v is ρ2(u, v). It is assumed that the true

subscore st and true total score xt are not collinear, so that |ρ(st, xt)| is less than 1. This

assumption also implies that |ρ(s, x)| < 1.

The following quantities for the examinee-level data are used (ignoring the information

on the institutions) to determine if the examinee-level subscores have any additional value

over their total scores:

1. The reliability ρ2(xt, x) of the total test score x

2. The reliability ρ2(st, s) of subscore s

3. The squared correlation ρ2(st, xt) of the true score st and the true total score xt

The KR-20 approach is typically employed to estimate the reliabilities of s and x

(Kuder & Richardson, 1937). The squared correlation ρ2(st, x) of the true subscore st and

the observed total score x is then given by

ρ2(st, x) = ρ2(st, xt)ρ
2(xt, x)· (1)

For details on computation of ρ2(st, xt), see Haberman (2005).

In the analysis of Haberman (2005), three basic approaches to prediction of the true

score st are considered. In the first or trivial approach, st is predicted by the constant
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E(s), so that the mean-squared error is σ2(st). In the second approach, one based on the

observed subscore s, the linear regression

ŝ = E(s) + ρ2(st, s)[s− E(s)]

of st on s predicts st, and the mean-squared error is σ2(st)[1 − ρ2(st, s)]. In the third

approach, based on the observed total score x, the linear regression

ŝx = E(s) + ρ(st, x)[σ(st)/σ(x)][x− E(x)]

of st on x predicts st, and the mean-squared error is σ2(st)[1 − ρ2(st, x)]. Relative to

use of E(s), ρ2(st, s) is the proportional reduction of mean-squared error from use of the

estimate ŝ based on the observed subscore, while ρ2(st, x) is the proportional reduction

in mean-squared error from use of the estimate ŝx based on the observed total score.

Haberman (2005) argues on the basis of these results that subscores should not be reported

if ρ2(st, s) is less than ρ2(st, x), for the true subscore is better approximated by use of the

total observed score rather than the observed subscore.

Haberman (2005) also considers an option of reporting an estimate of the true subscore

st based on the linear regression ŝa of st on both the observed subscore s and the observed

total score x. The study of proportional reduction of mean-squared error also requires the

correlation ρ(s, x) of the subscore s and the total score x. The regression is

ŝa = E(s) + β[s− E(s)] + γ[x− E(x)],

where

γ =
σ(s)

σ(x)
ρ(st, s)τ,

τ =
ρ(xt, x)ρ(st, xt)− ρ(s, x)ρ(st, s)

1− ρ2(s, x)
,

and

β = ρ(st, s)[ρ(st, s)− ρ(s, x)τ ].

The mean-squared error is then σ2(st){1 − ρ2(st, s) − τ 2[1 − ρ2(s, x)]}, so that the

proportional reduction in mean-squared error relative to E(s) is

ρ2(st, ŝa) = ρ2(st, s) + τ 2[1− ρ2(s, x)].
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Wainer et al. (2001) discusses the idea of augmentation, which means stabilizing the

subscores by augmenting data from any particular subscore with information obtained

from the other subscores. One can perform augmentation using the approach of Haberman

(2005) by considering a linear regression of st on other observed subscores uk, 1 ≤ k ≤ r.

In the most trivial case, r = 1 and u1 = x− s is the total score minus the subscore. Let the

true score for uk be ukt. Assume that st is not a linear function of s and uk, s is not a linear

function of the uk, and no uj is a linear function of the remaining uk. Then one computes

ŝu = E(s) + βu[s− E(s)] +
r∑

k=1

γk[uk − E(uk)],

where

γk = [σ(s)/σ(uk)]ρ(st, s)τk,

βu = ρ(st, s)

[
ρ(st, s)−

r∑
k=1

τkρ(s, uk)

]
and

r∑
k=1

[ρ(uj, uk)− ρ(s, uj)ρ(s, uk)]τk = ρ(st, uj)− ρ(st, s)ρ(s, uj)

for 1 ≤ j ≤ r. The mean-squared error is

σ2(st)

{
1− ρ2(st, s)−

r∑
k=1

τk[ρ(st, uk)− ρ(st, s)ρ(s, uk)]

}
,

so that, relative to E(s), the proportional reduction in mean-squared error is

ρ2(st, ŝu) = ρ2(st, s) +
r∑

k=1

τk[ρ(st, uk)− ρ(st, s)ρ(s, uk)].

This generalization appears to offer very little added benefit for the data considered in this

paper. In the trivial case in which r = 1 and u1 = x− s, ŝu is the same as ŝa.

2.2 Institutional-Level Analysis of Mean-Squared Error

At the institutional level, the analysis of Section 2.2 must be modified by decomposition

of scores and subscores into institutional and individual components. Thus subscore s

has the decomposition s = sI + se, where sI (the component for the institution of the

examinee) is the same for each examinee in that institution and has mean E(s) and variance
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σ2(sI) > 0. The score x has the decomposition x = xI + xe, where xI (the component for

the institution of the examinee) is the same for each examinee in that institution and has

mean E(x) and variance σ2(xI) > 0. The residual examinee subscore se = s − sI within

institution has mean 0, variance σ2(se) > 0, and is uncorrelated with the institutional

means sI and xI . The residual examinee total score xe = x − xI within institution has

mean 0, variance σ2(xe) > 0, and is uncorrelated with sI and xI . The analysis is not

directly concerned with the true scores and errors of Section 2.2, but it should be noted

that, under classical assumptions, se = (st − sI) + (s − st) and st − sI and s − st are

uncorrelated, so that st − sI has mean 0 and variance σ2(st) − σ2(s − st). In like fashion,

xe = (xt − xI) + (x− xt) and xt − xI and x− xt are uncorrelated, so that xt − xI has mean

0 and variance σ2(xt) − σ2(x − xt). It is assumed that sI and xI do not have a correlation

of 1 or −1.

If n examinees are observed from a given institution and if s̄ is the average subscore for

examinees from that institution, then s̄ = sI + s̄e, where s̄e is uncorrelated with sI and xI

and has mean 0 and variance σ2(se)/n. Thus s̄ has variance σ2(sI) + σ2(se)/n. For the

institution, the squared correlation of the institutional mean sI and the average s̄ is then

the reliability

ρ2(sI , s̄) =
σ2(sI)

σ2(sI) + σ2(se)/n
. (2)

Similarly, if x̄ is the average total score for examinees from that institution, then

x̄ = xI + x̄e, where x̄e is uncorrelated with sI and xI and has mean 0 and variance σ2(xe)/n.

Thus x̄ has variance σ2(xI) + σ2(xe)/n. The squared correlation of the institutional mean

xI and the average x̄ is then the reliability

ρ2(xI , x̄) =
σ2(xI)

σ2(xI) + σ2(xe)/n
.

Analysis also requires the squared correlation ρ2(sI , xI) of institutional mean subscore sI

and institutional mean score xI . This calculation may be accomplished by multivariate

analysis of variance, as is shown in Section 2.3. Given this squared correlation,

ρ2(sI , x̄) = ρ2(sI , xI)ρ
2(xI , x̄)· (3)
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Analogous to results in Section 2.2, if E(s) = E(st) is used to predict sI , then the

mean-squared error is σ2(sI). If

ŝI = E(s) + ρ2(sI , s̄)[s̄− E(s)],

the linear regression of sI on s̄, is used to predict sI , then the mean-squared error is

σ2(sI)[1− ρ2(sI , s̄)]. If linear regression of sI on x̄ is used to predict sI by use of

ŝIx = E(s) + ρ(sI , x̄)[σ(sI)/σ(x̄)][x̄− E(x)],

then the mean-squared error is σ2(sI)[1−ρ2(sI , x̄)]. Relative to use of E(s), the proportional

reduction of mean-squared error from use of the linear regression based on s̄ is the reliability

ρ2(sI , s̄), while the proportional reduction in mean-squared error from use of the linear

regression based on x̄ is ρ2(sI , x̄). Thus a basic requirement for reporting an institutional

subscore is that ρ2(sI , s̄) be greater than ρ2(sI , x̄). Otherwise, the average total score for

the institution predicts the institutional subscore mean sI better than does the average

subscore for the institution. For any nontrivial estimation of the institutional mean sI , it is

clearly best if the number of examinees n for the institution is relatively large. In addition,

for n sufficiently large, s̄ is a better predictor of sI than is x̄. The problem in practice is

to ascertain when the sample size for an institution is large enough for the subscores to be

worth reporting.

Combined use of s̄ and x̄ to predict sI is also possible by use of the same argument as

in Haberman (2005). In this case, the regression of sI on s̄ and x̄ is

ŝIa = E(s) + βI [s̄− E(s)] + γI [x̄− E(x)],

where

γI =
σ(sI)

σxI

ρ(sI , s̄)τI ,

τI =
ρ(xI , x̄)ρ(sI , xI)− ρ(s̄, x̄)ρ(sI , s̄)

1− ρ2(s̄, x̄)
,

and

βI = ρ(sI , s̄)[ρ(sI , s̄)− ρ(s̄, x̄)τI ].
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The mean-squared error is then σ2(sI)[1−ρ2(sI , s̄)−τ 2
I [1−ρ2(s̄, x̄)], so that the proportional

reduction in mean-squared error relative to E(s) is

ρ2(sI , ŝIa) = ρ2(sI , s̄) + τ 2
I [1− ρ2(s̄, x̄)]· (4)

As in the augmentation approach of Wainer et al. (2001), one may consider the

decomposition uk = uIk + uek, where sI and uIk are uncorrelated with se and uek.

Given standard assumptions to prevent collinearity of predictors, sI is predicted by the

institutional means s̄ for s and ūk for uk. The predictor ŝIu is then

ŝIu = E(s) + βIu[s̄− E(s)] +
r∑

k=1

γIk[ūk − E(uk)],

where

γIk = [σsI/σ(uIk)]τIk,

βIu = ρ(sI , s̄)

[
ρ(sI , s̄)−

r∑
k=1

τIkρ(s̄, ūk)

]
and

r∑
k=1

[ρ(ūj, ūk)− ρ(s̄, ūj)ρ(s̄, ūk)]τIk = ρ(sI , ūj)− ρ(sI , s̄)ρ(s̄, ūj)

for 1 ≤ j ≤ r. The mean-squared error is

σ2(sI)

{
1− ρ2(sI , s̄)−

r∑
k=1

τIk[ρ(sI , ūk)− ρ(sI , s̄)ρ(s̄, ūk)]

}
,

so that, relative to E(s), the proportional reduction in mean-squared error is

ρ2(sI , ŝIu) = ρ2(sI , s̄) +
r∑

k=1

τIk[ρ(sI , ūk)− ρ(sI , s̄)ρ(s̄, ūk)].

2.3 Institutional-Level Estimation Procedure

To estimate the means, variances, and correlations required for an institutional analysis

requires mean squares and mean cross products customarily associated with a one-way

multivariate analysis of variance (MANOVA) with dependent variables for the observed

total score and observed subscore. Let a sample be available with nj scores from institution

j, 1 ≤ j ≤ J . Let N be the total number of examinees from all institutions. Assume that

N > J . For examinee i of institution j, let the total score be xij, and let the subscore be
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sij. Let x̄j be the average total score from institution j, and let s̄j be the average subscore

from institution j. Let x̄· be the mean total score for all examinees, and let s̄· be the mean

subscore for all examinees. Let the within-institution mean square for total score be

Mxxe = (N − J)−1

J∑
j=1

nj∑
i=1

(xij − x̄j)
2,

let the within-institution mean square for subscore be

Msse = (N − J)−1

J∑
j=1

nj∑
i=1

(sij − s̄j)
2,

and let the within-institution mean cross product for subscore and total score be

Msxe = (N − J)−1

J∑
j=1

nj∑
i=1

(sij − s̄j)(xij − x̄j).

Let x̄, the mean total score for all examinees, be used to estimate E(x), and let s̄, the mean

subscore for all examinees, be used to estimate E(s). Then the between-institution mean

square for the total score is

MxxI = (J − 1)−1

J∑
j=1

nj(x̄j − x̄·)
2,

the between-institution mean square for the subscore is

MssI = (J − 1)−1

J∑
j=1

nj(s̄j − s̄·)
2,

and the between-institution mean cross product for subscore and total score is

MsxI = (J − 1)−1

J∑
j=1

nj(s̄j − s̄·)(x̄j − x̄·).

As in Snedecor and Cochran (1989), σ2(se) is normally estimated by σ̂2(se) = Msse,

and σ2(xe) is normally estimated by σ̂2(xe) = Mxxe. For the remaining required estimates,

let n denote the number of examinees from an institution, let

C = 1−
J∑

j=1

(nj/N)2
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measure dispersion of examinees across institutions (Gini, 1912), and let

K = NC/(J − 1).

Note that C ≥ (J −1)/J , with equality only if all nj are equal, and K ≥ N/J , with equality

only if all nj are equal. Then σ2(sI) has estimate

σ̂2(sI) = K−1(MssI −Msse),

σ2(xI) has estimate

σ̂2(xI) = K−1(MxxI −Mxxe),

σ2(s̄) has estimate

σ̂2(s̄) = σ̂2(sI) + σ̂2(se)/n,

σ2(x̄) has estimate

σ̂2(x̄) = σ̂2(xI) + σ̂2(xe)/n,

the covariance c(se, xe) of se and xe has estimate

ĉ(se, xe) = Msxe,

the covariance c(sI , xI) of sI and xI has estimate

ĉ(sI , xI) = K−1(MsxI −Msxe),

the covariance c(s̄, x̄) of s̄ and x̄ has estimate

ĉ(s̄, x̄) = ĉ(sI , xI) + ĉ(se, xe)/n,

the covariance c(sI , x̄) of sI and x̄ has estimate

ĉ(sI , x̄) = ĉ(sI , xI),

ρ2(sI , s̄) has estimate

ρ̂2(sI , s̄) = σ̂2(sI)/σ̂
2(s̄),

ρ2(xI , x̄) has estimate

ρ̂2(xI , x̄) = σ̂2(xI)/σ̂
2(x̄),
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ρ(sI , xI) has estimate

ρ̂(sI , xI) = ĉ(sI , xI)/[σ̂(sI)σ̂(xI)],

ρ(s̄, x̄) has estimate

ρ̂(s̄, x̄) = ĉ(s̄, x̄)/[σ̂(s̄)σ̂(x̄)],

ρ(sI , x̄) has estimate

ρ̂(sI , x̄) = ĉ(sI , x̄)/[σ̂(sI)σ̂(x̄)],

and τI has estimate

τ̂I =
ρ̂(xI , x̄)ρ̂(sI , xI)− ρ̂(s̄, x̄)ρ̂(sI , s̄)

1− ρ̂2(s̄, x̄)
·

Results for augmentation are derived by very similar arguments, so that details are omitted.

Some changes in procedure are necessary in special cases. The following simple rules

appear adequate in practice, although the approach of Bock and Peterson (1975) is worth

consideration even if the ideal condition that all nj are equal does not hold. If MssI ≤ Msse,

then no evidence exists that sI has a positive variance, so that ŝI , ŝIx, ŝIa, and ŝIu are

all approximated by s̄·, and all proportional reductions in mean-squared error may be

approximated by 0. If MssI > Msse but MxxI ≤ Mxxe, then no evidence exists that xI

has a positive variance, so that ŝIx is approximated by s̄·, and ŝIa and ŝI have the same

approximation. Thus the estimated proportional reduction in mean-squared error for ŝIx

is estimated by 0, and the proportional reduction in mean-squared error for ŝI and ŝIa are

estimated to be the same. If MssI > Msse and MxxI > Mxxe but

(MsxI −Msxe)
2 ≥ (MssI −Msse)(MxxI −Mxxe),

so that the normal estimate of ρ2(sI , xI) is greater than or equal to 1, then no evidence

exists that sI is not a linear function of xI . In this instance, ŝIa and ŝIx are estimated to

be the same, ĉ(sI , xI) is set to σ̂(sI)σ̂(xI), and ρ̂2(sI , ŝIa) and ρ̂2(sI , x̄) are set equal to

ρ̂2(xI , x̄).

Required computations may be performed with the help of the SAS NESTED and

GLM procedures (SAS Institute, 1996).
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3. Results

The subscore analyses from Section 2 were applied to two administrations (forms) of

a basic skills test belonging to the PRAXIS series. This test is designed for prospective

and practicing paraprofessionals (i.e., teacher’s aides) and measures skills and knowledge in

reading, mathematics, and writing, as well as the ability to apply those skills and knowledge

to aid in classroom instruction. Results were initially considered for six different subscores,

namely theory and application of mathematics, theory and application of reading, and

theory and application of writing. Although the results for six subscores were of primary

interest, we further examined the results for the case with the three subscores for writing,

mathematics, and reading that were obtained by pooling the theory and application

portions of each of the three content areas. A final analysis pooled the reading and writing

parts into one verbal subscore and retained the mathematics subscore. For each of the data

sets, about a fourth of the examinees did not report their institutions. As a consequence,

these examinees were removed from the analysis. The precise effect of this omission cannot

be readily determined. Even after removing these examinees, the number of examinees for

the two test forms were 3,240 and 2,497, respectively. The respective number of institutions

were 712 and 654. The number of students nj in an institution j ranged from 1 to 160 in

these data, with the median size being 2 for both test forms, the 75th percentile being 4

for both test forms, the 95th percentile being 16 and 14 for the respective test forms, and

the 99th percentiles being 41 and 28 for the respective test forms. Given these numbers,

the number of institutions for which any score reports are possible is clearly quite limited

unless reports combine more than one administration

3.1 Examinee-Level Analysis of Mean-Squared Error

For the total score, the reliability of both the test forms was 0.94. The first two

rows of Tables 1, 2, and 3 show the estimates of subscore reliability ρ2(st, s) and the

proportional reduction ρ2(st, x) given by (1), both from individual-level analysis and

expressed as percentages. The values indicate that the correlation of the true subscores

are substantially higher with the observed total score than with the observed subscores, so

that individual-level subscores should not be reported. In addition, the eigenvalues were
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computed from the 6 × 6 estimated correlation matrix of the individual subscores. Figure

1 shows the corresponding scree plots (Cattell, 1956) for the two test forms. The figure

strongly suggests that a single composite score exists such that each subscore can be very

well approximated by use of a linear transformation of the composite score.

The results should not come as a big surprise as other studies also found subscores to

have little added value. For instance, Harris and Hanson (1991) found subscores to have

little added value for the English and mathematics tests from the P-ACT+ examination,

and Haberman (2005) found subscores to have little added value for the SAT R© I verbal and

mathematics examinations.

3.2 Institutional Analysis

At the institutional level, results were obtained for numbers n of examinees per

institution of 30, 100, and 150. Because the maximum number of students in an institution

is 160, the upper bound of 150 appeared reasonable for the application. Tables 1, 2, and

3 show the proportional reductions in mean-squared error for these values of n for six

subscores, three subscores, and two subscores, respectively.

The last nine rows of the table show, for n = 30, 100, and 150, the values of the

institutional level proportional reductions (expressed as percentages) discussed earlier and

given by (3), (2), and (4), respectively.

Figure 2 compares the proportional reductions of mean-squared error at the institutional

level for observed means of total scores and for observed means of subscores for six subscores,

three subscores, and two subscores for each of the two test forms.

The tables and the figure reveal the following:

• On several occasions, MssI > Msse, MxxI > Mxxe, and

(MsxI −Msxe)
2 ≥ (MssI −Msse)(MxxI −Mxxe),

so that ρ̂2(sI , ŝIa) and ρ̂2(sI , x̄) are set equal to ρ̂2(xI , x̄). This indicates rather small

between-institution variation.

• The criterion of mean-squared error consistently favors prediction of institutional sub-

score means by observed institutional total score means rather than by observed in-
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plot, the three solid lines show the proportional reduction in mean squared error

of institutional-level observed total scores, a lower line indicating smaller institution

size, and the three dashed lines show the proportional reduction of mean squared er-

ror of institutional-level observed subscores, a lower line indicating smaller institution
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Figure 2. Comparison of proportional reduction of mean-squared error of institutional-

level observed total scores and institutional-level observed subscores.

Note. In any plot, the three solid lines show the proportional reduction in mean squared error of

institutional-level observed total scores, a lower line indicating smaller institution size, and the

three dashed lines show the proportional reduction of mean-squared error of institutional-level

observed subscores, a lower line indicating smaller institution size.

16



Table 1.
Percent Reduction (100 × Proportional Reduction)

in Mean-Squared Error With Six Subscores

n Test form 1 Test form 2
Subscore Subscore

1 2 3 4 5 6 1 2 3 4 5 6
ρ̂2(st, s) 77 71 77 73 75 74 78 75 79 58 76 75
ρ̂2(st, x) 84 91 83 88 81 81 88 91 86 83 83 83

ρ̂2(sI , x̄) 30 92a 92a 91 92a 92a 92a 90a 90 89 90 90a 90
100 98a 98a 96 98a 98a 98a 97a 97 96 97 97a 97
150 98a 98a 97 98a 98a 98a 98a 98 97 98 98a 98

ρ̂2(sI , s̄) 30 89 89 89 89 87 84 88 86 89 86 77 85
100 97 97 97 96 96 95 96 95 96 95 93 95
150 98 98 98 98 97 96 97 97 98 97 94 97

ρ̂2(sI , ŝIa) 30 92a 92a 91 92a 92a 92a 90a 90 90 90 90a 90
100 98a 98a 97 98a 98a 98a 97a 97 97 97 97a 97
150 98a 98a 98 98a 98a 98a 98a 98 98 98 98a 99

aFor the corresponding subscore MssI > Msse, MxxI > Mxxe and (MsxI −Msxe)2 ≥
(MssI −Msse)(MxxI −Mxxe) so that ρ̂2(sI , ŝIa) and ρ̂2(sI , x̄) are set equal to ρ̂2(xI , x̄).

stitutional subscore means. The observed institutional subscore means come close to

be favored only for two subscores and at least 100 examinees, as can be observed from

Table 3. Again, this result is not a big surprise as Longford (1990) also found subscores

to have of little added value for one of the tests considered.

• Use of both observed subscore mean and observed total score mean generally provides

only relatively small gains over use of observed subscores and hardly any gain over use

of observed total scores.

• Results vary appreciably from form to form.

• Although reporting institutional subscore means has little justification in the prepon-

derance of cases, reporting such means does not necessarily lead to poor estimates, for

the reliability at the institutional level is generally high.

The results for augmented subscores ŝIu’s are not provided, primarily because ŝIu’s result
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Table 2.
Percent Reduction (100 × Proportional Reduction)

in Mean-Squared Error With Three Subscores

n Test form 1 Test form 2
Subscore Subscore

1 2 3 1 2 3
ρ̂2(st, s) 85.3 85.5 84.1 86.5 83.7 85.2
ρ̂2(st, x) 87.3 85.9 86.9 89.5 85.4 86.8

ρ̂2(sI , x̄) 30 92.3a 92.3a 92.3a 90.1a 89.1 90.1a

100 97.6a 97.6a 97.6a 96.8a 95.8 96.8a

150 98.4a 98.4a 98.4a 97.8a 96.8 97.8a

ρ̂2(sI , s̄) 30 91.0 90.7 88.6 88.9 89.8 83.7
100 97.1 97.0 96.3 96.4 96.7 94.5
150 98.1 98.0 97.5 97.6 97.8 96.2

ρ̂2(sI , ŝIa) 30 92.3a 92.3a 92.3a 90.1a 90.3 90.1a

100 97.6a 97.6a 97.6a 96.8a 96.8 96.8a

150 98.4a 98.4a 98.4a 97.8a 97.8 97.8a

aFor the corresponding subscore MssI > Msse, MxxI > Mxxe and
(MsxI −Msxe)2 ≥ (MssI −Msse)(MxxI −Mxxe) so that

ρ̂2(sI , ŝIa) and ρ̂2(sI , x̄) are set equal to ρ̂2(xI , x̄).

in hardly any added benefit for the data.

3.3 Multivariate Analysis of Variance

A basic difficulty that is encountered with these data can be explored by canonical

analysis for a one-way multivariate analysis of variance (MANOVA) on the six subscores

(Bock, 1975, chapter 6). As in the discussions of augmentation, let the subscores be denoted

by uk for 1 ≤ k ≤ r = 6. Let CI be the institutional covariance matrix.1 with row k and

column k′ equal to c(uIk, uIk′), and let Ce be the error covariance matrix with row k and

column k′ equal to c(uk − uIk, uk′ − uIk′). Consider the system of relative eigenvalues and

normalized relative eigenvectors such that

CIvk = λkCevk

18



Table 3.
Percent Reduction (100 × Proportional Reduction)

in Mean-Squared Error With Two Subscores

n Test form 1 Test form 2
Subscore Subscore

1 2 1 2
ρ̂2(st, s) 91.2 85.5 92.0 83.7
ρ̂2(st, x) 91.4 85.9 92.1 85.4

ρ̂2(sI , x̄) 30 92.3a 92.3a 89.8 89.1
100 97.6a 97.6a 96.5 95.8
150 98.4a 98.4a 97.5 96.8

ρ̂2(sI , s̄) 30 91.5 90.7 88.4 89.8
100 97.3 97.0 96.2 96.7
150 98.2 98.0 97.5 97.8

ρ̂2(sI , ŝIa) 30 92.3a 92.3a 89.9 90.3
100 97.6a 97.6a 96.5 96.8
150 98.4a 98.4a 97.6 97.8

a For the corresponding subscore, MssI > Msse, MxxI > Mxxe

and (MsxI −Msxe)2 ≥ (MssI −Msse)(MxxI −Mxxe) so that
ρ̂2(sI , ŝIa) and ρ̂2(sI , x̄) are set equal to ρ̂2(xI , x̄).

for 1 ≤ k ≤ r, λk ≥ λk+1 for k < r, v′
kCevk = 1 for 1 ≤ k ≤ r, and v′

kCevk′ = 0 for k 6= k′.

For n examinees from an institution, the maximum possible value of ρ2(dI , d̄) for a linear

combination d of the uk with institutional mean dI is λ1/(λ1 + 1/n). This maximum is

achieved if d = v′
1u for u with coordinates uk for 1 ≤ k ≤ r. Thus, in terms of institutional

reliability, d can be regarded as the optimal linear combination of subscores. For a linear

combination f of the uk with institutional mean fI such that fe = f − fI and de = d − dI

are uncorrelated, ρ2(fI , f̄) cannot exceed λ2/(λ2 + 1/n). The upper bound is achieved for

f = v′
2u. Thus, in terms of institutional reliability, f may be termed the second optimal

linear combination of subscores because f is the optimal linear combination of subscores

subject to the constraint that fe and de are uncorrelated.

To estimate λk and vk for the required values of k, the canonical analysis from a

one-way MANOVA may be used. For examinee i of institution j, let the subscore value for
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uk be uijk, and let ūjk be the average subscore uk from institution j. Let ū·k be the mean

subscore uk for all examinees, let Me be the r by r within-institution matrix of mean cross

products with row k and element k′ equal to

Mkk′e = (N − J)−1

J∑
j=1

nj∑
i=1

(uijk − ūjk)(uijk′ − ūjk′),

and let MI be the between-institution matrix of mean cross products with row k and

column k′ equal to

Mkk′I = (J − 1)−1

J∑
j=1

nj(ūjk − ū·k)(ūjk′ − ū·k′).

Let the kth largest relative eigenvalue of MI relative to Me be ν̂k, and let the corresponding

relative eigenvector be v̂k. Let λ̂k = K−1(µ̂k − 1). Then the estimate of the maximum

possible ρ2(dI , d̄) is λ̂1/(λ̂1 +1/n), and the corresponding estimate of the maximum possible

value of ρ2(fI , f̄) is λ̂2/(λ̂2 + 1/n).

Results for the two test forms are summarized in Table 4.

Table 4.
Percent Reduction (100 × Proportional Reduction) in Mean-Squared Error

With Total Score, Optimal Linear Combination of Subscores,
and Optimal Second Linear Combination

n Test form 1 Test form 2
ρ̂2(xI , x̄) ρ̂2(dI , d̄) ρ̂2(fI , f̄) ρ̂2(xI , x̄) ρ̂2(dI , d̄) ρ̂2(fI , f̄)

30 0.923 0.925 0.427 0.901 0.910 0.505
100 0.976 0.976 0.713 0.968 0.971 0.773
150 0.984 0.984 0.788 0.978 0.981 0.834

Results for the optimal linear combination are virtually the same as results for the total

score x. For the case of the linear combination f , reliability is not very satisfactory without

an n greater than 100, and the reliability is much lower than for x̄. Thus a fundamental

problem is that very little information appears available that is not provided by the total

score.
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4. Discussion and Conclusion

This paper demonstrates that reporting subscores can be quite different at an

institutional level than at an individual level even though the basic arguments are quite

similar. Few studies explore this issue for operational tests, with the exception of Longford

(1990), who analyzed data from the pilot stage of development of a test. Our suggested

analyses can be performed with output from standard statistical software and does not

involve difficult computations, so that routine use of the proposed methodology is quite

straightforward.

In the example under study, reporting examinee means on subscores does not appear

to be justified for any realistic institution size, although reporting mean total scores for an

institution does not appear to be problematic even for the smallest sample-size condition

(30) examined. The results suggest that any possible use of subscores is most likely to

succeed with more aggregated subscores and large institutions.

The methods used in this report can be directly applied to score reporting at a different

type of aggregation, say states rather than institutions. It is also a straightforward matter

to extend the approach to a hierarchy of aggregations, say institutions within states.

Another issue with reporting subscores for institutions is that equating and/or scaling

for subscores is essential if information from more than a single form is to be used to

characterize results for an institution. Although such information can be available in survey

assessments such as NAEP, in typical cases that involve tests designed for assessment of

individuals rather than groups, equating is available for the total score but not for subscores

(for example, if an anchor test is used to equate the total test, only a few of the items

will correspond to a particular subscore so that an anchor test equating of the subscore is

not feasible). No proof exists that scaling is feasible in a particular application, and the

possibility exists that scaling that may be rather adequate for an individual is far from

satisfactory if applied to an institution, for the correlation structure for institutional means

may be quite different than the correlation structure for individual results. It should also

be emphasized that an application of scaling of subscores to the total score conceptually

requires the subscore to measure the same construct as the total score, in which case there

is no point reporting a subscore. Further, a subscore will typically involve too little data
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for accurate and precise scaling.

In the case of large institutions, it is prudent to perform outlier analysis to detect

unusual distributions of subscores or total scores. Such analysis is quite distinct from any

outlier analysis performed at an individual level. This is a possible area for future research.

The combined estimate based on both the subscore mean and the total score mean is a

reasonable candidate for some applications. However, the estimate did not help much, at

least in the example under study. Further the estimate is not easy to explain to institutional

users.

Analysis has been based on linear methods, so it is possible that other methods of

analysis might yield different results.
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Notes

1 Note that the between-institution variance matrix obtained from the one-way MANOVA,

which is an estimate of CI , has one large eigenvalue and a few negative eigenvalues for the

six-subscore case and three-subscore case for both the test forms, which is some proof that

most of the between-institution variance lies in the total score and not in the subscores.
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